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A simple large-aspect-ratio (R0=r) circular equilibrium model is developed for low-beta reversed field

pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport

driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations.

The equilibrium model is an RFP generalization of the common tokamak s-a model to small safety

factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP

toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function

model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global

equilibrium can be described in terms of the RFP field reversal and pinch parameters ½F;H�. This new

toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO

[J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic

ITG adiabatic electron instability rates for typical low-q RFP parameters. VC 2011 American Institute of
Physics. [doi:10.1063/1.3581072]

I. INTRODUCTION

Ion temperature gradient (ITG) driven short-scale micro-

instabilities (i.e., those satisfying khqi < 1, where kh is the

poloidal wavenumber and qi is the ion gyroradius) are ubiqui-

tous in magnetically confined plasmas. The ITG instability

has been of great interest in theoretical and experimental toka-

mak studies1 for many years. These studies suggest that ITG

and related nonadiabatic electron modes (trapped electron

modes at khqi < 1 and electron temperature gradient modes at

khqi > 1 where the ions are adiabatic) account for essentially

all the high-toroidal-wavenumber turbulent transport in the

energy, particle, and momentum channels of the tokamak.1

The reversed field pinch (RFP) parameter space is an

ultra-low-q (Bh � B/, q� 1), negative shear (dq=dr < 0)

regime with average bad curvature. It has rarely been investi-

gated from the viewpoint of ITG. This is because current-

driven tearing modes are believed to dominate core transport

in such machines. The control and mitigation of tearing mode

instabilities in RFPs has therefore been the first priority.

However, in the last few decades, global tearing modes

in an RFP have been significantly reduced by using a current

profile that is externally controlled.2 It is thought that under

these circumstances, small scale modes should become a sig-

nificant factor in RFP particle and heat transport just as in a

tokamak. However, what type of mode will dominate trans-

port has never been determined. A complete understanding

of linear stability and the saturation of short-scale microinst-

abilities will require both detailed experimental diagnostics

and, for accurate results, massively parallel, nonlinear, full

radius, gyrokinetic simulations. The ITG instability in the

RFP has received attention only relatively recently. Analyti-

cal work has been subject to approximations,3 including fluid

reductions.4 More recently linear gyrokinetic flux-tube simu-

lations have been performed.5,6 Determination of the role of

electrostatic ITG-driven particle and heat transport in

enhanced confinement RFP plasmas could lead to improve-

ment in our understanding and further refinement of the

enhanced confinement procedure.

The primary goal of this manuscript is to lay essential

groundwork for numerical investigation of ion temperature

gradient driven turbulence in an RFP geometry. This includes

a simple large-aspect-ratio circular equilibrium model using a

small set of parameters and a detailed comparison with other

equilibria. Numerical and analytical studies of ITG require

detailed information about the equilibrium. This includes the

equilibrium density, temperature, and current profiles, which,

along with boundary conditions, can be used to compute the

toroidal and poloidal magnetic fields and their curvature in

space. The role of this information in determining the stabil-

ity of turbulence is well documented.7 The most common

zero-beta RFP equilibria, the Bessel function model (BFM),8

or the modified Bessel function model (MBFM),9 have been

obtained in cylindrical geometry as a solution of the force-

free state:

r� B ¼ lB; (1)

where B is the magnetic field and l, frequently, is a constant.

In other words, the BFM is specified by the eigenvectors of

the curl operator in cylindrical geometry.

On the other hand, existing gyrokinetic simulation codes

have been designed around the large-aspect-ratio (R0=r)

shifted-circle tokamak s-a model where the toroidal field

completely dominates the poloidal field with qðrÞ > 1. In

this paper, we generalize the tokamak s-a model equilibrium

to large r=R0q while treating the toroidal field reversal

(where q vanishes and turns negative beyond) by generaliz-

ing the cylindrical force-free BFM equilibrium to toroidal

geometry (adding toroidal field curvature to the fields).
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Simple shifted-circle, large-aspect-ratio, tokamak equili-

bria have been obtained in the past by expanding the Grad-

Shafranov equation:10

D�W ¼ �l0R2p0 � F
dF

dW
; (2)

where the toroidal magnetic field is given by B/ � FðWÞ=R,

W is the flux function, and all other symbols here are

explained in detail in Sec. II. The Grad-Shafranov equation

has been solved analytically using simple approximations for

FðWÞ and p0 � dp=dW to give analytical tractability. In the

limit of zero-beta (p! 0) and infinite aspect ratio (cylinder)

with FðWÞ ¼ f0 ¼ const:, the toroidal magnetic field is given

by B/ � FðWÞ=R � f0=R, with Bh � B/ and q	 1 in the

simplest limit. A large number of studies have concentrated

on this limit.

The BFM is cylindrical, but could trivially be adapted to

toroidal geometry by stipulating that B/ ¼ FðWÞ=R and

leaving Bh unchanged. We will show that this prescription is

inconsistent with the Grad-Shafranov equation for its treat-

ment of Bh. Hence, we must develop consistent approxima-

tions to the Grad-Shafranov equation. Noting a variety of

simplifying approximations,11–14 we assume very low beta

and make the simple assumption FF0 / ðW�WsÞ. This is

inspired from actual MST equilibria, e.g., Fig. 7(c) of Ander-

son et al.15 Using this new toroidal Bessel function model

(TBFM), we address the problem of microturbulence in an

RFP, by modifying GYRO,16 a state-of-the-art computa-

tional code with many useful features. GYRO is a flexible

microturbulence code, which provides us the capability to

perform either flux-tube (with flat profiles) or global simula-

tions in a general geometry.17–20 As a special case, it also

allows us to simulate turbulence in a shifted-circle, low-beta

geometry, in addition to the use of realistic experimental

data in the eqdisk format. It must be noted that GYRO

assumes an equilibria that is a solution of the Grad-Shafra-

nov equation or B/ � FðWÞ=R.

We illustrate the new TBFM RFP equilibrium modifica-

tions made to GYRO by computing the linear growth rate of

the ITG instability and comparing it with growth rate calcu-

lations using the common s-a and Miller equilibrium repre-

sentations. Miller geometry is a generalization of the local

large-aspect-ratio shifted circular s-a model to an equilib-

rium representation that is appropriate for finite-aspect ratio

and high beta and that accommodates shifted flux surfaces

with an elliptical cross section, elongation, and triangularity.

The Miller representation can be fitted to experimental

global equilibrium profiles. Toroidal field reversal is easily

accommodated when the poloidal flux or the midplane minor

radius is used as a flux surface label. We show that the three

equilibria yield different growth rates. The TBFM equilibria

growth rates differ substantially from the “s-a“ model for

RFP parameters but are close to those predicted using the

Miller equilibrium.

This manuscript is organized as follows. In Sec. II, the

equilibrium is introduced. Two special cases are developed

in B, including a simple circular limit of the equilibrium.

The computed equilibria are shown to correspond well with

equilibrium reconstruction from MSTFIT.21 In Sec. III, we

describe the implementation in GYRO of the equilibria

developed in Sec. II. The linear stability of ITG modes using

GYRO in a typical RFP flux-tube is presented in Sec. IV.

Conclusions are discussed in Sec. V A detailed mathematical

description of the derivation of the equilibrium, which

includes the shift, is presented in the Appendix.

II. MODEL EQUILIBRIA

In Sec. II A, we solve the Grad-Shafranov (GS) equation

for an approximate large-aspect-ratio, shifted-circular RFP

equilibrium by generalizing the common force-free

(r� ~B ¼ l~B) cylindrical Bessel function model (BFM)

(Ref. 8) to account for toroidal curvature in the toroidal field

as well as the Shafaranov shift. The toroidal and poloidal

field of the BFM can be written as BBFM
/ ðrÞ ¼ B0J0ðlrÞ and

BBFM
h ðrÞ ¼ B0J1ðlrÞ, where J0 and J1 are the first and second

Bessel functions and l ¼ 2H=a. The quantity H is the com-

mon RFP wall pinch parameter H ¼ hBhiwall=hB/ivol

¼ la=2. A second important RFP parameter relating to the

equilibrium is the wall toroidal field reversal parameter is

F ¼ hB/iwall=hB/ivol ¼ HJ0ð2HÞ=J1ð2HÞ (Ref. 10). The

generalized and approximate GS solution we are deriving is

best for lower H because it becomes less accurate at high H.

In Sec. II B, we drop the radial (Shafranov) shift of the

magnetic center (needed when the gradient in the poloidal

beta is high) and rewrite the large-aspect-ratio circular RFP

equilibrium as the TBFM with poloidal field BTBFM
h ðrÞ

¼ ðR0=RÞBBFM
h ðrÞ and toroidal field BTBFM

/ ðrÞ ¼ ðR0=RÞ
BBFM

/ ðrÞ. The toroidal field is now in the form FðWÞ=R
required for standard tokamak gyrokinetic codes like

GYRO.16 In the circular limit, the major radius is R ¼ R0½1
þðr=R0Þ cos h� with h the usual poloidal angle from the out-

board-midplane and r the (midplane) minor radius. The

TBFM generalizes the large-aspect-ratio shifted circular

tokamak s-a model to include the neglected poloidal field.

(However, we have dropped the radial shift.) The ratio of

poloidal to toroidal magnetic fields is J1=J0 ¼ r=R0q, where

qðrÞ is the safety factor.

A. Low- large-aspect-ratio shifted circular RFP
equilibrium

We assume that the MST flux surface is approximately

circular and is centered at its magnetic center Cm (see Fig. 1).

It should be noted that some of the notation used in Fig. 1

differs from that of Ref. 16. Here, we use several radial coor-

dinates. The variable r̂ is the cylindrical radial coordinate

(normalized to the last closed flux surface radius a) and is not

a flux function except on the boundary. The variable r, which

is the radius of a surface, is a flux function and �r � r=a. As

will be explained later, the variable . is the areal coordinate

used as a measure of enclosed toroidal flux as in Ref. 16

and does not have one-to-one correspondence to r for an RFP,

as we discuss in Sec. II C. The point r̂ ¼ 0 is the geometric

center, whereas r ¼ 0 is the magnetic center. The boundary is

assumed circular (indicated by a solid line at r ¼ a) and

centered at r ¼ 0. Note that the surfaces have been assumed

circular but shifted. We also define ea ¼ a=R0 (inverse aspect
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ratio), where R0 is the major radius at the flux surface center

and r ¼ a is the minor radius at the last closed flux surface.

An axisymmetric toroidal MHD equilibrium is assumed

such that each flux surface is characterized by a unique value

W. In the usual cylindrical coordinates (R;/0; z), this surface

may be characterized by the variables RsðWÞ and ZsðWÞ,
where the subscript s stands for surface. The solution is usu-

ally determined from the Grad-Shafranov equation10 in the

large-aspect-ratio limit (i.e., ea � a=R0 � 1) via a series

expansion. This equation is as follows:

D�W � R2r 
 rW
R2

� �
¼ R

@

@R

1

R

@W
@R

� �
þ @

2W
@Z2

¼ �l0R2p0 � F
dF

dW
; (3)

where

B ¼ ð1=RÞrW� e/ þ ðF=RÞe/; (4)

so that RB/ ¼ FðWÞ and Bh ¼ j ~rWj=R.

Simple approximations for FðWÞ and p0 � dp=dW that

have been developed for analytical tractability, e.g., the

Solov’ev equilibrium11 [F2ðWÞ ¼ 2BWþ F2
0, pðWÞ ¼ ðA=

l0ÞW], the Herrnegger-Maschke solutions12,13 [F2ðWÞ
¼ DW2 þ F2

0], etc. Perhaps the most useful of these is the

large-aspect-ratio, finite-beta equilibria, frequently used in

tokamak microinstability studies,14

FðWÞ ¼ f0 1� R2
0l0p

f 2
0

þ 1

2

R2
0l0p

f 2
0

� �2

þ f2

f0

þ 
 
 

 !

; (5)

where p is the pressure and the terms proportional to

R2
0l0p=f 2

0 are finite-beta, finite-aspect ratio corrections. Even

here, simple forms for pðWÞ and f0f2 were chosen in Ref. 14

so that Eq. (2) is linear and easy to solve.

For mathematical convenience, we now make a transfor-

mation from the usual ðR;/0; ZÞ coordinates to a coordinate

system ðr̂; h;/Þ with origin at the geometric center Cg (see

Fig. 1): R ¼ R0 þ ar̂ cos u, Z ¼ ar̂ sin u, and /0 ¼ �/. In

these coordinates, we have

@2

@r̂2
þ1

r̂

@

@r̂
þ 1

r̂2

@2

@u2
� a

R0þar̂ cosu
cosu

@

@r̂
� sinu

r̂

@

@u

� �� �
W

¼�4pR2a2 dp

dW
�a2F

dF

dW
; (6)

where

B/ ¼ FðWÞ=R; Bh ¼ B 
 eh ¼ �
1

aR

@W
@r̂

; and

Br ¼ B 
 er ¼
1

ar̂R

� �
@W
@h

:

(7)

To simplify the analysis, we have normalized the length

to minor radius a (thus r̂ ¼ 1 on the boundary). When the

shift D collapses to zero (or is ignored), r̂ ! r and u! h
(see Fig. 1). At this point, we can simplify Eq. (6) using the

approximation mentioned in the Introduction,

dFðWÞ
dW

¼ lþ f̂ ðWÞOðe2
aÞ: (8)

Through OðeÞ,this expression yields

FðWÞ ¼ lðW�WsÞ; (9)

where Ws is a constant of OðeaÞ or smaller. This approxima-

tion provides a connection to simplified RFP equilibria as

follows. The force-free equation r� B ¼ lB can be decom-

posed into two equations j/ ¼ lB/=l0 and jh ¼ lBh=l0. The

second equation satisfies the Grad-Shafranov equation

because of the short poloidal circuit. The form consistent

with the Grad-Shafranov equation is jh ¼ ðdF=dWÞðBh=l0Þ,
which implies dF=dW ¼ l. When this expression is assumed

to hold to OðeÞ, consistent with Eq. (9), and finite-beta is

ignored, the solution of the Grad-Shafranov equation is a

function of two parameters. These are l ¼ 2H=a and r=a,

where H is the RFP pinch parameter and a is the minor

radius. The derivation is given in the Appendix. This simpli-

fied Grad-Shafranov solution reproduces low-H MST equili-

bria while being useful for toroidal ITG studies. It also

reduces to the cylindrical BFM model.

The solution of the Grad-Shafranov equation for a circu-

lar shifted RFP equilibrium is obtained by substituting Eqs.

(8) and (9) into Eq. (6). The average poloidal beta is assumed

to be order e2
a, i.e., bp � Oðe2

aÞ, which allows the neglect of

the dp=dw term in Eq. (6). The resulting form of Eq. (6) is

expanded in powers of e and solved order by order up to

OðeÞ. Constants of integration are chosen to satisfy the wall

boundary conditions. From the solution

Wðr=aÞ ¼ aB0

2H
J0ð2rH=aÞ � J0ð2HÞ½ �; (10)

eaDðr=aÞ ¼ a

4

ffiffiffi
p
p Fð2rH=aÞ

J1ð2HÞ ðr=aÞ2 þ 2d
H

� �
; (11)

where d ¼ �
ffiffiffi
p
p

H=2ð ÞFð2HÞ=J1ð2HÞ and F is a combina-

tion of Bessel functions. [See the Appendix, Eq. (A10).]

From this solution,

B/ ¼ B0J0ð2rH=aÞ½1� eaðr=aÞ cos h�; (12)

FIG. 1. A toroidal device with geometric center Cg and minor radius a is

illustrated. Here, R and Z are the usual cylindrical coordinates.
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Bh ¼ �
1

R

@W
@�r
ð1� ea cos hD0Þ

¼ B0J1ð2Hr=aÞ 1� eaðr=aþ D0Þ cos h½ �; (13)

where D0 ¼ @rDðr=aÞ. Finally, in this coordinate system,

BrðaÞ ¼ 0 identically since W has no dependence on h.

B. Low-H RFP toroidal Bessel function model

Dropping the radial Shafranov shift D0 of the magnetic

center in Eq. (13) (which is only needed when the gradient in

the poloidal beta is high), we can define from Eqs. (12) and

(13) the large-aspect-ratio circular RFP approximate equilib-

rium or TBFM:

Bt ¼
B0J0½2Hr=a�
½1þ ðr=R0Þ cos h� ; (14)

Bp ¼
B0J1½2Hr=a�
½1þ ðr=R0Þ cos h� ; (15)

where the major radius is R ¼ ½1þ ðr=R0Þ cos h� with h the

usual poloidal angle from the outboard-midplane and r the

(midplane) minor radius.

The toroidal field is now in the form FðWÞ=R required

for standard tokamak gyrokinetic codes like GYRO.16 It is

convenient to define BTBFM
/ ðrÞ ¼ ðR0=RÞBBFM

/ ðrÞ and

BTBFM
h ðrÞ ¼ ðR0=RÞBBFM

h ðrÞ, where BBFM
/ ðrÞ ¼ B0J0½2H

ðr=aÞ� and BBFM
h ðrÞ ¼ B0J1½2Hðr=aÞ� correspond to the

force-free cylindrical Bessel function model. The magnetic

fields BBFM
/ ðrÞ, BBFM

h ðrÞ, and Bh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BBFM

/ ðrÞ2 þ BBFM
h ðrÞ2

q
for this equilibrium are illustrated in Fig. 2(a) for H ¼ 1:35

and in Fig. 2(b) for H ¼ 1:8.

Rigorously, the safety factor qðWÞ is

qðWÞ � 1

2p

ð2p

0

rBt

RBp

� �
s

dh ¼ ðr=R0Þ
J0½2ðr=aÞH�
J1½2ðr=aÞH� ; (16)

and the ratio of poloidal to toroidal magnetic fields is

BTBFM
h ðr; hÞ

BTBFM
/ ðr; hÞ ¼ ðr=R0Þ

J1½2ðr=aÞH�
J0½2ðr=aÞH� ¼ r=R0qðrÞ; (17)

independent of h. The right hand side of Eq. (17), [r=
R0qðrÞ], can be called the the nonzero-H-RFP parameter;

when H! 0 and r=R0qðrÞ ! 0, the poloidal field

BTBFM
h ! 0 and the toroidal field BTBFM

/ ðrÞ ¼ ðR0=RÞB0,

which is the tokamak limit of the TBFM. The so-called toka-

mak s-a model corresponds to a large-aspect-ratio shifted

circular tokamak equilibrium with the magnetic shear

s ¼ ðr=qÞdq=dr and a ¼ �q2R0db=dr quantifying the Sha-

franov shift. More precisely when H! 0 [small r=R0

and=or larger qðrÞ], the TBFM reduces to the tokamak s-a
model, but with a ¼ 0, since the shift has been neglected in

the TBFM.

When H increases beyond about 1.2, the toroidal field at

the wall BTBFM
/ ða; hÞ reverses direction. The reversal surface

rrev=a, where BTBFM
/ ðrrev; hÞ ¼ 0 [the first zero of J0ð2H

r=aÞ] and qðrrevÞ ¼ 0, moves inward. For r > rrev, qðrÞ and

BTBFM
/ ðr; hÞ are negative as illustrated in Fig. 2. The tokamak

shear parameter sðrÞ is typically negative for r � rrev, small

and positive for r 	 rrev, and singular at r ¼ rrev where

dq=dr < 0 and q ¼ 0, and hence 1=q! 61. In Sec. III, we

show that no singularities occur in the TBFM formulation of

the gyrokinetic equation operators since factors of 1=q
always appear in the combination ð1=qÞ=½1þ ðr=R0qÞ2�1=2

,

which is finite at r ¼ rrev.

C. Breakdown of the TBFM at high H

A few comments are in order for high-H (>3) RFP

regimes usually observed in discharges with external current

profile control. At these values, the approximation used in

Sec. A, Eq. (8), breaks down and large-aspect-ratio, higher

order O½ðr=R0Þ2� terms must be considered. For these high-

H discharges the numerical equilibria differ considerably

from the TBFM. While large H is nominally far from a toka-

mak, as illustrated in Fig. 4, the local Miller equilibrium,17–19

already embedded in GYRO, can be used nonetheless (in

principle) for any toroidally symmetric RFP discharge. The

Miller equilibrium is a generalization of the large (infinite)-

aspect-ratio, shifted circular tokamak s-a model to include

the finite-aspect ratio effects of an elongated ellipse with tri-

angularity. In essence, profiles of q; j; d;R0 (safety factor,

elongation, triangularity, and surface center major radius),

plasma pressure (temperature and density), and the outboard-

midplane toroidal field must be fitted to an experimental

RFP equilibrium as a function of midplane minor radius r,

where r is used as a flux surface label. This is straightforward

for simulations of local linear modes and nonlinear fluctua-

tions on either side of the reversal surface (as demonstrated

in Sec. IV). In principle, global GYRO gyrokinetic simula-

tions overlapping the reversal radius could be carried out. In

practice, as we explain in Sec. III, GYRO is currently set up

to read plasma and MHD equilibrium profiles keyed to the

toroidal flux label v (which is convenient for tokamaks)

rather than the poloidal flux label W (which is more conven-

ient for RFPs). For RFP equilibria with toroidal field rever-

sal, v is not monotonic in r [note qðrÞ ¼ dWðrÞ=dvðrÞ]. We

FIG. 2. Radial variation of magnetic field for (a) H ¼ 1:35 and (b) H ¼ 1:8.

Both figures illustrate the total field, Bh i (solid), toroidal BT (dashed), poloi-

dal BP (dotted). The lower figure has the corresponding q profile.
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now turn to the implementation of the TBFM via the more

general Miller geometry formulation of the gyrokinetic

operators.

III. IMPLEMENTATION IN GYRO

For equilibrium profiles and experimental data input,

GYRO uses the common tokamak areal coordinate . defined

through the toroidal flux,16

vt ¼
1

2p

ð
B/dA ¼ B0

.2

2
: (18)

Here, B0 is arbitrarily chosen as the on-axis magnetic field.

For simplicity, this coordinate can written as

. ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aÞJ1½2Hðr=aÞ�

H

r
: (19)

The variation of normalized . as a function of r=a is shown

in Fig. 3 for several values of the pinch parameter. For suffi-

ciently large values of the parameter H, the areal coordinate

. may correspond to more than one flux surface. Rigorously

speaking, the common tokamak profile grid . does not have

a one-to-one correspondence with r=a and is not convenient

for RFP experimental data profiles. Fortunately, GYRO uses

r=a as the internal simulation radial grid. Furthermore for

1:91=H < ðr=aÞ < 1, . cannot be defined in Fig. 3 because

J1½2Hðr=aÞ� < 0. For example, in Fig. 3, for H ¼ 2:5, . is

not defined for r=a > 0:76. The other extreme (H! 0) is

represented by a dashed line in Fig. 3 and is both monotonic

and one-to one. For RFPs, it should be straightforward to

directly map experimental profiles in WðrÞ=WðaÞ to profiles

in r=a.

The choice of s and q in RFPs is also limited. In Fig. 4,

the variation of q (y-axis) with s (x-axis) is illustrated for a

fixed value of �r ¼ 0:1 and e ¼ 1=3. The extreme top region

with q � 1, which has been as shaded as dark, corresponds

to the regime of interest in usual tokamak simulations. For

example, the point marked with an asterisk and labeled CYL

corresponds to the usual cyclone-base case22 with q ¼ 1:4
and s ¼ 0:8. The H! 0 limit intersects this region.

Miller geometry17 has the flux surface shape defined by

Rðr; hÞ ¼ R0ðrÞ þ r cosfhþ sin�1½dðrÞ� sin hg and Zðr; hÞ
¼ rjðrÞ sin h, where as in Eq. (5), Bh ¼ jrrj@rW=R and

B/ ¼ F=R. The general formula for jrrj is given in Eq. (5)

of Ref. 18. Since the TBFM sets the shift to D0ðrÞ ¼ @rR0ðrÞ,
the elongation jðrÞ to one, and the triangularity dðrÞ to zero,

we have jrrjðr; hÞ ¼ 1, R0ðrÞ ¼ R0ð0Þ ¼ R0ðaÞ, and R ¼ R0

þr cos h for circular flux surfaces. Following Ref. 18, GYRO

uses the midplane minor radius r (normalized to the separa-

trix minor radius a) as a magnetic flux surface label and pri-

mary radial grid. The primary unit of effective magnetic

field strength is Bunit defined as

BunitðrÞ ¼ B0.d.=rdr: (20)

For the TBFM model, BunitðrÞ ¼ B0J0½2Hðr=aÞ� ¼ BBFM
/ ðrÞ,

where BTBFM
/ ðr; hÞ ¼ ðR0=RÞBBFM

/ ðrÞ and BTBFM
h ðr; hÞ=

BTBFM
/ ðr; hÞ ¼ J1½2Hðr=aÞ�=J0½2Hðr=aÞ� ¼ r=R0qðrÞ.

To define the TBFM gyrokinetic operators on the bal-

looning mode (field-line following) field perturbations, we

continue to follow Ref. 18, starting with the mode wavenum-

ber labels and argument of the gyroaverage Bessel functions

and continuing with the diamagnetic, parallel transit, and

curvature drift frequency operators. For corresponding toka-

mak results, Ref. 16 may also be consulted.

The perpendicular wavenumber in the magnetic surface

(which depends on the toroidal mode number) is

ky ¼ kh½½q̂�� ¼ ðn=RÞðB=BhÞ ) khðR0=RÞ½1þ ðr=R0qÞ2�1=2;

(21)

where the poloidal wavenumber is kh ¼ nq=r. Following the

½½ �� notation of Ref. 18, ½½q̂��ðr; hÞ � rB=ðRqBhÞ. Note that

jrrj½½q̂�� ¼ ½½B�� ¼ ðB=BunitÞ. The unit of ion gyroradius is

qunit
s ðrÞ ¼ cs=ðeBunit=micÞ, where csðrÞ ¼ ðTe=miÞ1=2

. It is

FIG. 4. (Color online) Variation of q with s. The parameter H has been var-

ied for fixed �r ¼ 0:1. As H increases, we go down the axis. The shaded

region illustrates the regime of usual tokamak simulations. The red dot is the

preferred point with H ¼ 2 and �r ¼ 0:1.FIG. 3. (Color online) Plot of areal coordinate . vs physical coordinate �r.

The dashed line indicates the limit H! 0, which is monotonic, and for each

value of . has a unique spot in the device.
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useful to note that the local gyroBohm mode label at a given

r becomes

khq
unit
s ðrÞ ¼

nq

r

cs

eBBFM
/ =mic

" #
¼ n

R0

cs

eBBFM
h =mic

� �
; (22)

so that the mode label is continuous through the reversal.

Here, ðn=R0Þ is the toroidal wavenumber and nq=r is the

poloidal wavenumber. The former is more convenient for

RFPs and the latter is normally quoted for tokamaks.

The argument of the gyroaveraged Bessel function is

ðk?qiÞ2 ¼ ð2Ti=TeÞðkhq
unit
s Þ

2ðt?=vthÞ2ð1þ ½½kx=ky��2Þ; (23)

where ðt?=vthÞ2 ¼ k½½B��, k is the magnetic moment divided

by the energy (pitch angle) constant of motion,

½½kx=ky��ðr; hÞ ) sðh� h0Þ=½1þ ðr=R0qÞ2�1=2ðR=R0Þ; (24)

h0 is the ballooning mode angle label (in addition to n) and

s � ðr=qÞdq=dr is the tokamak magnetic shear. The parame-

ter s=½1þ ðr=R0qÞ2�1=2
is clearly continuous through the re-

versal point. The RFP-TBFM model neglects the Shafranov

shift. However, to recover the tokamak s-a model in the limit

ðr=R0qÞ ! 0, we could replace sðh� h0Þ by sðh� h0Þ
�a sin h.

The (flux surface constant) diamagnetic frequency oper-

ator is exactly

x�ðrÞ ¼ ðkhq
unit
s Þðcs=aÞ½a=Ln þ ðt2=t2

th � 3=2Þa=LT �; (25)

where the normalized plasma density and temperature gradi-

ent scale lengths are given by a=Ln ¼ �ad ln n=dr and

a=LT ¼ �ad ln T=dr.

The parallel motion transit frequency operator is

tkrk ) tkð1=R0qÞ=½1þ ðr=R0qÞ2�1=2@h; (26)

which at the reversal point becomes ðtk=rÞðjqj=qÞ@h. (This

operator is continuous given the symmetry ½tk; h� ,
½�tk;�h�) Also ðtk=tthÞ ¼ 6½ðt=tthÞ2ð1� k½½B��Þ�1=2

, and

the trapped particle bounce points are k½½B��ðr; hÞ ¼ 1.

Using the “MHD-rule” and setting the grad-B drift equal

to the curvature drift (always true at low-beta), the ion curva-

ture drift frequency operator is [from Eq. (19) of Ref. 18 and

j ~rrj ¼ 1]

xDðr;hÞ ¼
Ti

Te
ðkhq

unit
s Þ

cs

a

2a

R0

� �
t
tth

� �2

1� k½½B��
2

� �" #

�f½½cos��ðr;hÞþ ½½kx=ky��½½sin��ðr;hÞg: (27)

The TBFM has factors for the geodesic curvature

½½sin h��ðr; hÞ ) ðR0=RÞ sin h

½1þ ðr=R0qÞ2�
; (28)

and the normal curvature

½½cosh��ðr; hÞ ¼> ðR0=RÞ cos hþ ðR0=rÞðr=R0qÞ2

½1þ ðr=R0qÞ2�
: (29)

IV. RESULTS

For simplicity, we ignore the small but finite shift in the

solution given by Eq. (11), limiting ourselves to a simple equi-

librium given by Eq. (10) and eDðr=aÞ ¼ 0. Such an equilib-

rium has circular concentric surfaces as in the tokamak s-a
model. As mentioned earlier, the essential difference between

the models is the difference in the geometric factors. The geo-

metric factors jrrj, ½½q̂��, ½½cos��ðr; hÞ, B/, Bh, ½½kx=ky��,
½½sin��ðr; hÞ, and B for the three equilibrium models (s-a, RFP-

TBFM, and the Miller geometry at r0=a ¼ 0:5) are illustrated

in Fig. 5. The other parameters are a=Ln ¼ 0:58 a=LT ¼ 5,

and H ¼ 1:35, implying q ¼ 0:18, B0 ¼ 1, and s ¼ �0:71.

The factor ½½cos��ðr; hÞ in Fig. 5 for the s-a model, which is

shown with the symbol “þ,” has both good curvature and bad

curvature. Furthermore Bt � B, unlike the RFP.

The growth rate obtained from the TBFM greatly exceeds

estimates from the usual s-a model frequently employed in

tokamak studies. For a comparison, the normalized real fre-

quency spectrum and growth rate as a function of the normal-

ized wavenumber khqs are illustrated in Figs. 6(a) and 6(b) for

the three equilibrium models. The s-a traces are indicated by

the symbol þ, the TBFM by the symbol }, and the Miller

model by a solid line. The parameters are a=Ln ¼ 0:58,

a=LT ¼ 5, Ti=Te ¼ 0:4, �r0 ¼ 0:5, and H ¼ 1:35, which corre-

sponds to q ¼ 0:18 and s ¼ �0:71. The growth rate obtained

from the s-a model is the least. This is because the s-a model

neglects poloidal curvature and finite poloidal field, resulting

in favorable curvature on the inboard side. To explain this let

us look at Eq. (29) closely. In Eq. (29), the function

½½cos��ðr; hÞ has two terms. The first part corresponds to toroi-

dal curvature and the second corresponds to poloidal curva-

ture. (Note that e�r is a dimensionless quantity.) The finite

poloidal magnetic field allows RFPs to have average bad cur-

vature. The outboard side of tokamaks (�p=2 < h < p=2),

cosðhÞ > 0Þ has net bad curvature because q > 1 and the sec-

ond term is negligible. This also results in a good curvature on

the inboard side. As a result the tokamak ITG instability

strongly balloons toward the outboard side. For these reasons,

the s-a model assumes that ½½cosh��ðr; hÞ ¼ cos h. In an RFP,

the second term can exceed the first term because q < 1.

Because this term is independent of h, it is large everywhere,

even on the inboard side. These effects are absent in simple

tokamak equilibrium representation even when supplied with

q values that are less than unity and negative shear.

We now examine this instability for various radial loca-

tions r0=a ¼ 0.2, 0.3, 0.5, 0.65, and 0.7. The normalized

growth rate (xia=cs) and real frequency (xra=cs) as a func-

tion of the normalized wavenumber khqs at these values of ra-

dial location are shown in Fig. 7. Other parameters are the

same as before, i.e., a=Ln ¼ 0:58, a=LT ¼ 5, and Ti=Te ¼ 0:4.

The phase velocity xr=k is nearly constant and only slightly

dispersive as shown in the Fig. 7(a). The phase velocity is

higher at r0=a ¼ 0:5. In Fig. 7(b), the normalized growth rate

xia=cs decreases dramatically at r0=a ¼ 0:5 and beyond

(with gradient scale lengths kept equal). Furthermore, the

range of kh with significant growth rate also decreases. At

r0=a ¼ 0:5, the range is (0 < khqs � 0:6), which is smaller

than that for r0=a ¼ 0:1. It must be noted that at these two
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locations, equilibrium field parameters are extremely differ-

ent. While the poloidal field is small at r0=a ¼ 0:2, it is large

at r0=a ¼ 0:5 and beyond. The condition for large poloidal

field and associated curvature is r0 > rint, where rint ¼ 2R0q2.

This has been estimated from B � B/½1þ r2=ð2R0qÞ2� and

r2=ð2R0qÞ2 � r=R0 at r ¼ rint. Apart from these quantities,

the magnetic shear changes dramatically while the safety fac-

tor does not. As explained in the caption of Fig. 7, in moving

from r0=a ¼ 0:2 to r0=a ¼ 0:7, the safety factor q changes

very less [qð0:2Þ ¼ 0:2378 and qð0:7Þ ¼ 0:1154] while the

magnetic shear changes dramatically [ sð0:2Þ ¼ �0:0775 and

sð0:7Þ ¼ �2:7552]. Curvature also varies from surface to sur-

face. As we move outward, the effect of geodesic curvature

decreases and the effect of normal curvature increases.

Beyond a certain r and H, there is no average good curvature

at all. The poloidal contribution to curvature, ½½cos��ðr; hÞp
¼ ð1þ e2�r2=q2Þ�1=2 e�r=q2½ �, is approximately 1:8 and 3:6 at

the two locations, respectively. Apart from the fields, the

effect of trapping, which comes from the 1=R variation of the

field, is also different at the two locations. The Miller model

and the RFP TBFM are seen to be in close agreement for

r0=a ¼ 0:5 and lower. Above r0=a ¼ 0:5, the agreement

FIG. 6. (a) Normalized growth rate (xia=cs) and (b) real frequency

(xra=cs) as a function of the the normalized wavenumber khqs for the three

equilibrium models s-a(þ), RFP toroidal Bessel function model (}) and

Miller (solid line) The parameters are r0=a ¼ 0:5 with H ¼ 1:35. This corre-

sponds to q ¼ 0:18 and s ¼ �0:71. Other parameters were a=Ln ¼ 0:58 and

a=LT ¼ 5.

FIG. 5. (Color online) The geometric factors jrrj, Gq, ½½q��, ½½cos��ðr; hÞ, Bt, Bp, ½½kx=ky��, ½½sin h��ðr; hÞ and B for the three equilibrium models s-a(þ), RFP to-

roidal Bessel function (}) and Miller (solid line) The parameters are r0=a ¼ 0:5 with H ¼ 1:35. This corresponds to q ¼ 0:18 and s ¼ �0:71. Other parame-

ters were a=Ln ¼ 0:58 and a=LT ¼ 5.
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depends on khqs, with the TBFM yielding smaller growth

rates as khqs increases above a critical value near khqs ¼ 0:3.

Moreover, the critical value itself decreases as r0=a increases

from 0.65 to 0.7. The real frequency has a less significant off-

set between the Miller model and the TBFM.

Although GYRO does not solve the gyrokinetic equation

in ballooning coordinates, the ballooning eigenvector can

still be reconstructed from numerical solutions.23 The bal-

looning eigenvector is illustrated in Fig. 8. The normalized

real part of the eigenvector for H ¼ 1:35 and �r0 ¼ 0:3 is

shown in Fig. 8(a) and the imaginary part in Fig. 8(b). This

eigenvector is much broader than the corresponding eigen-

vector for r0=a ¼ 0:5, which is also shown for comparison.

Figure 8 must also be compared with typical eigenvectors

for tokamaks, which are usually very localized near hp ¼ 0.

This is illustrated in Ref. 16, Fig. 18, where the full width at

half maximum is smaller than p. On the other hand, in Fig.

8(a), it is much larger. Further details of this instability, its

properties and relationship to the tokamak ITG instability

will be examined in detail in a future paper.

V. CONCLUSIONS

Zero-beta solutions to the Grad-Shafranov equation

assuming ðr=aÞea=q2 � 1 and including OðeaÞ corrections

(i.e., the poloidal variation) have been analyzed in the con-

text of the ITG instability in RFP geometry. An average bad

curvature is obtained even in the Oðe0
aÞ variation in geome-

try; this differs from tokamaks away from the core. The

OðeaÞ correction implies finite poloidal (h) dependence of W
which can have significant consequences for ITG stability.

This model uses just two parameters, H and r=a, to rep-

resent circular shifted equilibria to OðeaÞ and agrees closely

with numerically obtained equilibria for the MST reversed

field pinch at low H. A simpler version of this equilibrium

that neglects shift altogether is used for analytical and com-

putational purposes to illustrate basic features of the ITG

instability in an RFP. A consequence of this model is that,

unlike tokamaks, the shear and safety parameters cannot be

chosen arbitrarily and must satisfy the equilibrium.

Using this geometry, the gyrokinetic code GYRO has

been modified to include major effects of the RFP geometry.

We then compare the results with the simple s-a model, the

more detailed RFP toroidal Bessel function model equilibria,

as well as Miller equilibria. The s-a equilibrium predicts a

much lower growth rate. Inclusion of poloidal curvature is

essential to this instability. The variation of the growth rates

for two different radial positions has also been examined.

The growth rate is found to be higher at lower values of r0=a
where poloidal field is small. If r0=a is increased, this mode

tends to be more localized (in the ballooning direction) but

with a smaller growth rate, higher real frequency and propa-

gates much faster.

ACKNOWLEDGMENTS

This work was supported by U.S. Department of Energy

Grant No. DE-FG02-85ER-53212. V.T. acknowledges the

help from P. Fimognari and J. Anderson for MST equilib-

rium data used in Fig. 9.

APPENDIX: DERIVATION OF EQILIBRIUM

We present the approximations, assumptions, and a brief

description for the equilibrium [Eqs. (12) and (13)]. This

equilibrium is accurate for low H and agrees well with

experiment (see Fig. 9). However, at high theta, a numerical

equilibria must be used.

We develop the solution of the the Grad-Shafranov

equation obtained analytically from the substitution of the

approximation Eq. (8) into Eq. (6). The substitution yields

FIG. 8. (Color online) Typical normalized eigenvectors (a) real part and (b)

imaginary part for �r0=a ¼ 0:3 (q ¼ 0:226; s ¼ �0:189) in red online (gray

in print), khq ¼ 0:6, and �r0=a ¼ 0:5 (q ¼ 0:185; s ¼ �0:716) in black,

khq ¼ 0:15. Other parameters are H ¼ 1:35, a=Ln ¼ 0:58, a=LT ¼ 5:0, and

Ti=Te ¼ 0:4.

FIG. 7. (Color online) Normalized real frequency xra=cs [part (a)] and nor-

malized growth rate xia=cs [part (b)] as a function of the normalized wave-

number khqs for r0=a ¼ 0:2, q ¼ 0:237, s ¼ �0:0775 (labeled r = 0.2);

r0=a ¼ 0:3, q ¼ 0:226, s ¼ �0:189 (labeled r = 0.3); r0=a ¼ 0:5,

q ¼ 0:1858, s ¼ �0:716 (labeled r = 0.5); r0=a ¼ 0:65, q ¼ 0:136,

s ¼ �1:889 (labeled r = 0.65); and r0=a ¼ 0:7, q ¼ 0:115, s ¼ �2:755 (la-

beled r = 0.7); with Miller model (solid line) and RFP toroidal Bessel func-

tion model (1 symbols). The other parameters are a=Ln ¼ 0:58, a=LT ¼ 5,

and H ¼ 1:35.
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ð1þ er̂ cos hÞ @2

@r̂2
þ 1

r̂

@

@r̂
þ 1

r̂2

@2

@h2

� �
W

� e cos h
@

@r̂
� sin h

r̂

@

@h

� �� �
W

þ l2a2ð1þ er̂ cos hÞðW�WsÞ ¼ 0: (A1)

We expand the flux function and the toroidal and poloi-

dal fields in powers of e � a=R0:

Wðr̂; hÞ ¼ W0ðr̂Þ þ eW1ðr̂Þ cos h; (A2)

B/ ¼ lðW0ðr̂Þ �WsÞ þ l cos h½r̂ðWs �W0ðr̂ÞÞ þW1ðr̂Þ��;
(A3)

Bh ¼ �
W0
0ðr̂Þ
a
þ cosðhÞ r̂W0

0ðr̂Þ �W1
0ðr̂Þð Þ

a
�: (A4)

Substituting Eq. (A2) into Eq. (A1), we can solve the

Grad-Shafranov equation, order by order. To Oðe0Þ, we

have

W000ðr̂Þ þ
W0
0ðr̂Þ
r̂
� a2l2ðWs þW0ðr̂ÞÞ ¼ 0: (A5)

Assuming W0 is continuous and that W0ðr̂ ¼ 0Þ ¼ A, the so-

lution of this equation can be easily written in terms of the

Bessel function J0ðarlÞ,

W0ðr̂Þ ¼ ½1� J0ðar̂lÞ�Ws þ AJ0ðar̂lÞ: (A6)

Note that to this order, we have assumed a circular, unshifted

equilibrium. The tokamak result in the limit of l! 0 is

obtained by expanding this in powers of l,

W0ðr̂Þ ¼ A� 1

4
a2Al2r̂2 1�Ws

A

� �
…; (A7)

which approximately gives the 1=R variation as

BT ¼ A=Rþ OðlÞ2. In the next order, we have

W1
00ðr̂Þ þW1

0ðr̂Þ
r̂
þ a2l2 � 1

r̂2

� �
W1ðr̂Þ

þ alðA�WsÞJ1ðar̂lÞ ¼ 0: (A8)

The solution is

W1ðr̂Þ ¼
1

4
a
ffiffiffi
p
p

lðA�WsÞFðzÞr̂2 þ J1c1 þ Y1c2; (A9)

where

FðzÞ ¼
ffiffiffi
p
p

J0J2 � J2
1

� �
Y1 þ J1GðzÞ

	 

; (A10)

Ji ¼ JiðzÞ is the Bessel function of integer order i and

z ¼ arl is real and positive. The function GðzÞ is the Meijerg

function24

GðzÞ ¼ G2;2
3;5 z;

1

2
j 0; 1

2
;� 1

2

0; 1;�1;�1;� 1
2

� �
; (A11)

where the notation is that of Ref. 24. It can also be written in

the simplified form:

GðzÞ ¼ 1

2pi

ð
L

CðsÞCð1þ sÞCð1� sÞCð�sÞ
Cðs� 1=2ÞCðsþ 2Þ2Cðsþ 3=2Þ

z�2sds:

(A12)

We define c1 ¼ B0d=l, and introduce a parameter d to be

determined by the boundary. We set c2 ¼ 0 because Y1ðzÞ
diverges as l! 0 or r ! 0. Note that we need not make full

expensive evaluations of FðzÞ and GðzÞ as all functions con-

tained therein are functions of just one real variable z. A fit

generated from a small set of equispaced values of z may be

enough. Finally, from Eq. (A6) and Eq. (A9), we have

Wðr̂; hÞ ¼ W0ðr̂Þ þ eW1ðr̂Þ cos h: (A13)

Now that W is known accurately to OðeÞ, this solution can be

used to compute all W-dependent quantities like B/, Bh, the

shift D, etc. The function W contains several unknown con-

stants, which are now determined. First, the r̂ ! 0 limit of

Bformulas Eq. Bformulas and Eq. (A3) gives A ¼ ðB0

þlWsÞ=l, where B0 ¼ R0B/ðr̂ ¼ 0Þ. The parameter l in

Eq. (A6), and therefore Eq. A2), can be shown to be related

to the pinch parameter H and F, which are defined by:

H ¼
B/
� �wall

B/
� �vol

and F ¼
B/
� �wall

B/
� �vol

; (A14)

where Bhh iwall
and B/

� �wall
refer to the poloidal average of

Bh and hB/i on the wall, and hB/ivol
is the volume average

of B/. Thus, it can be easily shown that

H ¼ al
2
þ Oðe2Þ and F ¼ H

J0ð2HÞ
J1ð2HÞ þ Oðe2Þ: (A15)

Note that all poloidal averages in Eq. (A14) come solely

from terms of Eq. (A2) that are Oðe0Þ. The boundary condi-

tion Wða; hÞ ¼ const is used for B/
� �wall

, but this does not

mean that Bhða; hÞ is constant as well. Next, inverting the

expression for H, we set l ¼ 2H=a. The F�H plot remains

unchanged and the same as the BFM. Next, the constant Ws

FIG. 9. Comparison of numerical and analytical equilibria. (a) Equilibrium

generated from MSTFIT (Ref. 15), (b) equilibrium generated from the

model, (c) comparison of normalized flux function between the model and

MSTFIT, and (d) comparison of Shafranov shift for H ¼ 1:51.
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may be determined by the convention W ¼ 0 on the wall,

i.e., Wð1; hÞ ¼ W0ð1Þ ¼ 0, since W1ð1Þ ¼ 0 for the above

value of d. The constant is therefore given by

Ws ¼ �
B0

l
J0ð2HÞ: (A16)

The constant d [which is related to c1 ¼ B0d=l of Eq.

(A9)] is determined by using the boundary condition

Brðr̂ ¼ 1; hÞ ¼ 0. This condition simply means that there are

no fields that intersect the circular wall. From Eq. (Bformu-

las), this implies that Brðr̂ ¼ 1Þ / dWðr̂ ¼ 1; hÞ=dh ¼ 0, or

Wða; hÞ ¼ const. Finally, from Eq. (A13), we have

w1ðr̂ ¼ 1Þ ¼ 0 which along with c2 ¼ 0 and Eq. (A9) gives

us

c1 ¼ �
a
ffiffiffi
p
p

lðA�WsÞFð2HÞ
4J1ð2HÞ ; (A17)

or

d ¼ �
ffiffiffi
p
p H

2

� �
Fð2HÞ
J1ð2HÞ ; (A18)

where A ¼ ðB0 þ lWsÞ=l has been used.

Using these formulas, W may now be written

Wðr̂; hÞ ¼ B0a

2

�
ðJ0ð2r̂HÞ � J0ð2HÞÞ

H

þ e cos hð
ffiffiffi
p
p

2
FðzÞr̂2 þ d

H
J1ðzÞÞ

�
: (A19)

The location of the magnetic center is obtained by expanding

@r̂W ¼ 0, assuming that the shift is small and close to the ori-

gin (allowing us to expand the Bessel functions around

zero). The magnetic center is located at

D0 ¼ e
d

2H
; (A20)

where d is given by Eq. (A18). The dimensionless parameter

D0 is proportional to the distance between the points Cm and

Cg in Fig. 1. This shows that there is no shift in the limit

e! 0. The values of d given by Eq. (A18) diverge when

J1ð2HÞ � 0 or H � 1:9. Therefore, if H is such that

J1ð2HÞ � 0 the above formulas cannot be trusted for ITG

purposes. This condition equally applies to the cylindrical

BFM as well. The function Wðr̂; hÞ given by Eq. (A19) as a

function of R and Z is illustrated in Fig. 9 for typical MST

parameters a ¼ 50cm, H ¼ 1:5, e ¼ 1=3, and B0 ¼ 1. Note

the outward shift. The peak value of W at the magnetic center

is given by

WðD0Þ ¼
aB0

2H
½1� J0ð2HÞ�: (A21)

In a coordinate system centered at this point (as is used in

GYRO), we can write, (see Fig. 1), R ¼ RðrÞ þ r cosðhÞ and

Z ¼ r sinðhÞ. A simple transformation is given by

r̂ ¼ �r þ eDð�rÞ cos uþ OðeÞ2 and e cos h ¼ e cos uþ OðeÞ2,

where �r � r=a. Substituting this into Eq. (A19) and expand-

ing in e, we get

eDð�rÞ ¼ 1

4

ffiffiffi
p
p Fð2�rHÞ

J1

�r2 þ 2d
H

� �
(A22)

and

Wð�rÞ ¼ aB0

2H
J0ð2�rHÞ � J0ð2HÞ½ �: (A23)

Note that �r and W do not have one-to-one correspondence if

H extends beyond the second zero of the function J0 or

2H > 5:52. If that is the case, the above solutions (and there-

fore the BFM) cannot be trusted. Next, we can write

B/ ¼ B0J0ð2�rHÞð1� e�r cos hÞ; (A24)

Bh ¼ �
1

R

@W
@�r
ð1� e cos hD0Þ

¼ � dW0ð�rÞ
d�r

1� eð�r þ D0Þ cos hð Þ; (A25)

where D0 ¼ @�rDð�rÞ. Finally, in this coordinate system,

BrðaÞ ¼ 0 identically since there is no h dependence of W.
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